
Technical University of Denmark

02239

Data Security

Access Control Lab

Authors:

Jeff Gyldenbrand
Marcus Pagh

Student Nr.:

s202790
s151714

December 20, 2021

Contents
1 Introduction 1

2 Access Control Lists 1

3 Role Based Access Control 3

4 Evaluation 5
4.1 ACL . 5
4.2 RBAC . 6

5 Discussion 7

6 Conclusion 8

7 Setup and running the project 8
7.1 How to edit external file . 8
7.2 Running the projects . 9

8 Appendix 9
8.1 Illustrations . 9

Access Control Lab

1 Introduction

Figure 1.1: Overview of the system

Often in server/client setups not all clients are equal. It would therefore behove
the organization to have some kind of measure to restrict access for certain clients.
Throughout this assignment two ways different means of achieving said behavior is
explored.

The simplest way to restrict user access is by using Access Control Lists (ACL).
ACL works by storing a list of all users and their respective permissions. Any action
taken by said user is checked against the list of permissions and will only be executed
if the user in question has the particular permission in the list.

The second way this assignment is regulating client access is by implementing Role
Based Access Control (RBAC). RBAC is similar to ACL in the sense that they both
keep track of permissions in a separate list. However, while ACL appoints specific
legal actions to each user, RBAC works by categorising permissions into specific
roles that each user can be appointed to.

2 Access Control Lists
In the first part of the assignment, we have been given explicit client permissions and
to accompany these new restrictions, an instance of ACL has been implemented. The
list is shown in fig 2.1 and the table is added to the database as shown in fig 2.3.
Whenever any method involving one of the restricted actions is invoked, the list
is consulted before any logic is executed. If and only if the current user has the
necessary permission(s) will the action be executed.

1 of 9

Access Control Lab

user print queue topQueue start stop restart status readConfig setConfig
jeff 1 1 1 1 1 1 1 1 1
alice 1 1 1 1 1 1 1 1 1
bob 0 0 0 1 1 1 1 1 1
cecilia 1 1 1 0 0 1 0 0 0
david 1 1 0 0 0 0 0 0 0
erica 1 1 0 0 0 0 0 0 0
fred 1 1 0 0 0 0 0 0 0
george 1 1 0 0 0 0 0 0 0

Figure 2.1: Permissions table as implemented in database before company
restructuring (Visualized).

user print queue topQueue start stop restart status readConfig setConfig
jeff 1 1 1 1 1 1 1 1 1
alice 1 1 1 1 1 1 1 1 1
henry 1 1 0 0 0 0 0 0 0
cecilia 1 1 1 0 0 1 0 0 0
david 1 1 0 0 0 0 0 0 0
erica 1 1 0 0 0 0 0 0 0
fred 1 1 0 0 0 0 0 0 0
george 1 1 0 1 1 1 1 1 1
ida 1 1 1 0 0 1 0 0 0

Figure 2.2: Permissions table as implemented in database after company
restructuring(Visualized).

2 of 9

Access Control Lab

CREATE TABLE permissions (
user varchar(20),
print boolean(0, 1),
queue boolean(0, 1),
topQueue boolean(0, 1),
start boolean(0, 1),
stop boolean(0, 1),
restart boolean(0, 1),
status boolean(0, 1),
readConfig boolean(0, 1),
setConfig boolean(0, 1)
);

Figure 2.3: Permissions table as implemented in database.

3 Role Based Access Control
In the second part of the assignment we are asked to extrapolate the previously
defined permissions and group them into roles in a way that imposes the same
restrictions but bound to predetermined types of relationships. The result of said
grouping is shown in fig 3.1. Notice the extra permission "admin". This is not part
of the original permission list and will be explained later.

roles print queue topQueue start stop restart status readConfig setConfig admin
manager 1 1 1 1 1 1 1 1 1 1
power-user 1 1 1 0 0 1 0 0 0 0
service-tech 0 0 0 1 1 1 1 1 1 0
janitor 0 0 0 0 0 1 0 0 0 0
user 1 1 0 0 0 0 0 0 0 0

Figure 3.1: Role table as implemented in database (Visualized).

In order to utilize RBAC instead of ACL, the database table for permissions is
altered to hold the list of fig 3.1. The new database table is structured as shown in
fig 3.4. Furthermore the users table are added an extra row, ’roles’, to allow users
to be assigned specific rows. The users table with assigned roles are shown in fig 3.2

3 of 9

Access Control Lab

user password salt roles
jeff HashedPasswordCensoredForLatexPurposes| 22-10-2021:21.18zz manager
alice HashedPasswordCensoredForLatexPurposes| 22-10-2021:21.18zz manager
bob HashedPasswordCensoredForLatexPurposes| 22-10-2021:21.18zz janitor, service-tech
cecilia HashedPasswordCensoredForLatexPurposes| 22-10-2021:21.18zz power-user
david HashedPasswordCensoredForLatexPurposes| 22-10-2021:21.18zz user
erica HashedPasswordCensoredForLatexPurposes| 22-10-2021:21.18zz user
fred HashedPasswordCensoredForLatexPurposes| 22-10-2021:21.18zz user
george HashedPasswordCensoredForLatexPurposes| 22-10-2021:21.18zz user

Figure 3.2: Role table as implemented in database before company restructuring
(Visualized).

user password salt roles
jeff HashedPasswordCensoredForLatexPurposes| 22-10-2021:21.18zz manager
alice HashedPasswordCensoredForLatexPurposes| 22-10-2021:21.18zz manager
cecilia HashedPasswordCensoredForLatexPurposes| 22-10-2021:21.18zz power-user
david HashedPasswordCensoredForLatexPurposes| 22-10-2021:21.18zz user
erica HashedPasswordCensoredForLatexPurposes| 22-10-2021:21.18zz user
fred HashedPasswordCensoredForLatexPurposes| 22-10-2021:21.18zz user
george HashedPasswordCensoredForLatexPurposes| 22-10-2021:21.18zz user, service-tech
henry HashedPasswordCensoredForLatexPurposes| saltyMcSalty222 user
ida HashedPasswordCensoredForLatexPurposes| saltyMcSalty222 power-user

Figure 3.3: User table as implemented in database after company restructuring
(Visualized).

4 of 9

Access Control Lab

CREATE TABLE permissions (
roles varchar(200),
print boolean(0, 1),
queue boolean(0, 1),
topQueue boolean(0, 1),
start boolean(0, 1),
stop boolean(0, 1),
restart boolean(0, 1),
status boolean(0, 1),
readConfig boolean(0, 1),
setConfig boolean(0, 1),
admin boolean(0, 1)
);

Figure 3.4: Role table as implemented in database.

Whenever any method involving one of the restricted actions is invoked, the particular
clients role is consulted before that role is is then looked up in the permissions table.
If and only if the current user has a role with the necessary permission(s) will the
action be executed.

4 Evaluation

4.1 ACL

Requirements Satisfied
Print server prototype modified to enforce a ACL-policy yes
The ACL is specified in a external file yes
All registered user are included in the file yes
The external file is loaded when the server starts yes
Can handle the company restructuring of the final task yes
Manual UI no1

Figure 4.1: Requirements for ACL

1

Considering the situation "Bob leaves the company and George takes over the
responsibilities as service technician. At the same time, two new employees are

1Automated tests are instead mocking user-interactions with feedback still being printed in
terminal. Tests are made in such a way that any sequence of user interactions can easily be put
together by copy-pasting the necessary actions from the current tests.

5 of 9

Access Control Lab

hired: Henry, who should be granted the privileges of an ordinary user, and Ida who
is a power user and should be given the same privileges as Cecilia." multiple things
are happening.

The first part "Bob leaves the company and George takes over the responsibilities as
service technician." is done relatively easy by manually altering the database rows of
the permissions table involving Bob and George. George’s row is simply altered so
every 0 where Bob has a 1 is flipped to a 1. Now George will have every permission
Bob had in addition to his own (As Bob was only a service technician and not a
user, he did not have the permission to print, as George did. George retains this
ability while being granted extra permissions).

The second part "two new employees are hired: Henry, who should be granted the
privileges of an ordinary user, and Ida who is a power user and should be given
the same privileges as Cecilia." is more tricky as it involves adding extra users.
The easiest way to do this would be to manually copying a row of a user with a
known password and altering the username and permission to correspond to the new
employees. This however would impose severe security risks as the passwords would
not be secret. Instead we have opted to allow anyone to sign up and create their own
user, by choosing their own username and password. New users are created with
zero permissions, so in addition to Henry and Ida manually signing up, the admin
would have to also alter the rows in the permissions table of the database, just like
(s)he did with George to set the corresponding permissions for the new employees.

The altered table corresponding to the specified situation is shown in fig 2.2. For
reference, the table before the restructuring can be found in fig 2.1.

4.2 RBAC

Requirements Satisfied
Print server prototype modified to enforce a RBAC-policy yes
The RBAC is specified in a external file yes
All registered user are included in the file yes
The external file is loaded when the server starts yes
Can handle the company restructuring of the final task yes
Manual UI no1

Figure 4.2: Requirements for RBAC

2

Considering the same situation "Bob leaves the company and George takes over
the responsibilities as service technician. At the same time, two new employees are
hired: Henry, who should be granted the privileges of an ordinary user, and Ida who

6 of 9

Access Control Lab

is a power user and should be given the same privileges as Cecilia." again with the
RBAC version, the changes are implemented a bit differently.

Again, in order to let George take upon himself the responsibility of the service
technician, an admin can manually alter the database table permissions, but instead
of flipping ones and zeroes, (s)he must now simply add "service-tech" to the roles
of George. Again Bobs row can either be removed entirely or simply stripped of all
roles.

However, to satisfy our own curiosity as well as refraining from doing the same thing
once again, we have added the extra column, ’admin’, to the permissions table and
granted this permission only to the role of ’manager’. The purpose of the ’admin’
permission is to allow editing the external database file directly from the UI instead
of doing so manually. The ’admin’ permission allows the creation of new users as
well as (de)assigning roles.

Once a manager has made the appropriate changes to account for the specified
situation, the permissions table shown in fig 3.1 remains the same as before, while
the users table shown in fig 3.2 is altered to look as shown in fig 3.3

5 Discussion
At first glance one might think that ACL allows for more flexibility than RBAC,
since with ACL any and all actions can either be allowed or disallowed for any specific
users, while with RBAC such flexibility is restricted to fit certain roles. However
by looking at it a little bit longer it is possible to conclude that both methods can
actually provide the exact same functionality. If no role correspond to the necessary
permissions, roles can either be combined or a new role can simply be created. The
only difference is how they are implemented and managed. While a small company
with fluid roles might enjoy the ability to define specific client permissions, a larger
company with a lot of users coming and going, it might impose fewer mistakes and
a more fluent process when the roles are already predetermined.

With the small scenario given to us, it is essentially up to personal preference as
there is no real difference. However, when it comes to the design choices we made
together with the two versions, a few key take aways does come up.

For instance with ACL we opted to let any new user self-sign up while with RBAC
we opted to only allow new users to be created by a manager. There is no particular
reason that we did not do it the other way around or just did the same thing twice.
While allowing users to self-sign up makes up vulnerable to flooding attacks, only
letting managers create new users might cost more in terms of availability. Also, if
allowing self-sign up with RBAC, if the admin were to decide the initial permissions
should change, by simply changing the permissions of the initial role, the changes
would instantly apply to previously self-signed up users. With ACL such a change

7 of 9

Access Control Lab

would only apply to users signing up after the changes are made.

With a lot of different actions ACL might be more prone to user-errors, while RBAC
is more intuitive for the less techy manager when new clients or employees need
appropriate roles. Therefore we opted to let managers (de)assign user roles directly
from the UI.

With RBAC we also opted to only allow users with the ’admin’ permission to create
new users. While our implementation requires the manager to manually specify both
password and salt, in any real-life situation these should obviously be randomly
generated and somehow securely transferred to the user in question. This does
however provide an easy way of managing initial roles in situations where these are
often not the same.

6 Conclusion
While both implementations satisfied all requirements and offer the same amount of
flexibility, in conclusion RBAC is probably the preferred choice in most situations
as it is more intuitive to use for the less techy person, provides the same amount
of flexibility if needed as well as providing a faster way of (de)assigning permissions
which is a great benefit in situations with a lot of change in clients.

However ACL does have its place when custom roles are the rule rather than the
exception.

7 Setup and running the project
• The software used in this project:

- IDE: Eclipse[1]. Version: 2020-12 (4.18.0).
- Database: SQLite[2].

7.1 How to edit external file

As in the previous lab, we have opted to store user data in a database. As we
continue this lab by implementing permissions, the database-file now also serves as
the "external policy file, or another form of external media, that is loaded when the
print server starts".

As we have chosen to use SQLite, this external DB-file does however look confusing
in comparison to a plain-text file, if opened by a regular text editor.

In order to manually change permissions, in both the ACL and RBAC versions, the
file should be opened and edited by a viewer capable of rendering such a file. While
something like PHPMyAdmin might be the most well-known, we did not bundle this
with our program. If you have no editor capable of editing this file in a satisfactory

8 of 9

Access Control Lab

matter, we suggest using the online tool found at https://extendsclass.com/
sqlite-browser.html

7.2 Running the projects

Run the project:

• Install Eclipse to your system.

• In Eclipse: File > Import > General > Existing Projects into Workspace >
Select archive file > Locate the zipped project (final_projects.zip) > Finnish

• Two projects appears: PrintServer-acl and PrintSercer-rbac

• Run src/main/java/test/Main.java in each of the projects

• if localport is used pick a new port number

When application is running:

• You will get the option to

(1) run the test program

(2) exit the application

• For both projects, the test will run through all operation on each of the users
to demonstrate which users are allowed to do what.

• The log is printed to either the folder /log/ or at root depending on the
operating system it is running on. We did’nt have time to fix this.

All mentioned functionality has been implemented, although the manual UI has not
been prioritized. Every possible action is shown in the automated tests, which has
been structured in such a way that any sequence of client actions can easily be put
together. Any and all output are still shown in the terminal as if the user had been
interacting live.

8 Appendix

8.1 Illustrations

References
[1] Eclipse. “IDE”. In: (). url: https://www.eclipse.org/downloads/packages/

installer.
[2] SQLite. “database”. In: (). url: https://github.com/xerial/sqlite-jdbc/

releases.

9 of 9

https://extendsclass.com/sqlite-browser.html
https://extendsclass.com/sqlite-browser.html
https://www.eclipse.org/downloads/packages/installer
https://www.eclipse.org/downloads/packages/installer
https://github.com/xerial/sqlite-jdbc/releases
https://github.com/xerial/sqlite-jdbc/releases

	Introduction
	Access Control Lists
	Role Based Access Control
	Evaluation
	ACL
	RBAC

	Discussion
	Conclusion
	Setup and running the project
	How to edit external file
	Running the projects

	Appendix
	Illustrations

