
Technical University of Denmark

02239

Data Security

Authentication Lab

Authors:

Jeff Gyldenbrand
Marcus Pagh

Student Nr.:

s202790
s151714

December 20, 2021

Contents
1 Introduction 1

2 Authentication 1
2.1 Password Storage . 2
2.2 Password Transport . 3
2.3 Password Verification . 5

3 Design and Implementation 5
3.1 Architecture . 5

4 Evaluation 8

5 Conclusion 9

A Appendix 10
A.1 Illustrations . 10
A.2 Setup & Running the project . 12

Authentication Lab

1 Introduction
When a service is running, it is often a requirement that the use of said service is
limited to a finite set of clients. In order to enforce such a limitation, it is necessary
to identify which clients belong in the allowed set and which do not. The process
of authentication is used to allow a client to identify him or herself to the server
running the service. Techniques to authenticate a client includes (But is not limited
to) passwords (Something the client should know), various biometrics (Something
the client is) and physical access cards (Something the client possesses). In the
case of this lab, a password based authentication mechanism is implemented, with
each client having their own unique identifier (username) which is not secret and a
corresponding secret key (password) known only by the client.

In order to securely authenticate without an intruder gaining illicit access by snooping
the password, a secure connection is necessary. One might argue it is enough to hash
the secret password on the client side before sending it to the server, but the fact
is that whatever is sent will serve as the key, which the server will authenticate the
client with. Therefore sending a password as plain text is just as secure as sending
a hashed version of said password. For the sake of the implementation in this lab,
assumptions about a secure connection is made rather than explicitly implemented.

Storing and verifying clients passwords are also addressed throughout the lab. It
would be a breach of confidentiality if a password became known to anyone but the
client as well as a breach of integrity if verification was possible without the correct
key/password.

Furthermore the implementation of this lab tries to mitigate human error on the
client side by limiting the amount of time any client can be authenticated at one
time. This is useful to prevent an intruder accessing the service from previously
authenticated device, like a stolen laptop.

Lastly an attempt at preventing brute force attacks are made. While completely
removing the possibility of a successful brute force attack is impossible while also
maintaining availability, the implementation of this lab tries to find a balance that
severely limits the risk of such an attack being successful while maintaining an
acceptable availability.

2 Authentication
In this lab any communication to the printer service at all must be passed through
an authenticated channel. This means it will not be possible to send or receive any
data between the printer service and the outside without first proving ones identity
to the server running the service. If and only if the server accepts this identity as
belonging to a certified client, will the client be able to append print jobs, modify
parameters et cetera.

1 of 13

Authentication Lab

In order to limit the possibility of a third party gaining access by utilizing a previously
authenticated connection, time restricted sessions has been implemented. This
ensures that any authentication will only be accepted within a specified time frame
and thus the client must authenticate anew should more communication be required.

Furthermore to prevent attacks relying on brute force, a time delay has been added
after a certain amount of unsuccessful attempts. While this does limit availability
in the case of a forgetful client, it is but a short delay. However while this is such
a short delay for the client, it severely limits the amount of guesses an attacker can
do within any reasonable amount of time, rending a brute force attack unfeasible.

2.1 Password Storage

To authenticate a client with a secret key, one can be persuaded to think that the
server must also know said key. Luckily that is not the case, at it would not just be a
great security risk if the server was ever compromised, but also vastly inappropriate
as the server admin (Or anyone with access from the inside) would be able to know
the secrets of every client. Secrets that might not even be limited to this one specific
service.

Instead a unique hash of the password is stored on the server. And to prevent
dictionary or even rainbow table attacks, the password is concatenated with a unique
salt before being hashed.

There is a number of ways to store such hashes. Below is described three such
options, arguing pros and cons of each solution.

System File Storing passwords in a system file relies on the operating system/file
system protection mechanisms and are thus arguably protected against
both illicit reading and writing. However there is two main caveats;
It is necessary to implement some mechanism or service to provide
controlled access to the data stored in the file in order to actually
utilize the information stored within. Secondly any person or otherwise
with root access would be able to read or even tamper with the stored
credentials.

Public File Storing passwords in a public file is the traditional way to store
passwords on Unix systems. The public file can be read by anyone,
but mechanisms are put in place to ensure only authorized users
and/or services can modify it. Confidentiality of the passwords is
normally protected by cryptographic means, not unlike described
earlier. The two main caveats are similar to the ones of the system
file; While it is not necessary to implement a means of modifying
the public file as with the system file, it is necessary to implement a
means of restricting modification of the file. Secondly as before, any
user or service with root access will be able to read or even tamper

2 of 13

Authentication Lab

with the stored credentials. While the added cryptography would
ensure confidentiality even from a snooping root user, integrity could
easily be broken by swapping the passwords between clients or similar
illicit actions.

DBMS Passwords stored in databases are historically often not encrypted or
at least not encrypted well and therefore relies on architecture and
access control to maintain confidentiality and integrity, much like
the system file. As the previous two, an ill-intended superuser will
be able to breach confidentiality and/or integrity depending on the
level of encryption.

It seems with every choice exists the risk of a rogue system administrator breaching
integrity. While this is true, a non-compromised system administrator will have little
to no motive to do so, as he or she is in place only to maintain the service provided
for the clients. Worse is the breach of confidentiality, which seems easily mitigated
by cryptographic means similar to those previously stated as being implemented in
this lab.

When deciding a means to store credentials already secured by cryptography, it
really comes down to a choice between using a database versus a file stored locally
on the server.

While one could argue a database superuser could be different than the root user of
the system on which the database is running, thus adding extra security by means of
separation, this had little influence on the decision. While cryptographically secured
files has the same advantages as a cryptographically secured database at first glance,
there is a few practical advantages to using a database rather than a file:

For passwords to offer maximum security, it must be possible for a client to change
them. A client might use the same passwords for multiple services and if one service
is ever breached, very little security is left where ever that same key might be in use.
In an environment with multiple simultaneous clients, a flat file might cause locking
issues thus preventing availability of the service for the clients. Furthermore using
a locally stored flat file would cause headaches if it was ever necessary or desirable
to scale up to multiple servers. While there are certainly ways of mitigating those
issues, solutions have already been built into most database systems.

2.2 Password Transport

Transporting sensitive information like passwords between a server and a client
requires a secure connection. There is a number of ways such a connection can
be established, including Kerberos as explained in the previous lab and Public key
authentication with client certificates (TLS). In this lab we assume such a connection
is already made and instead focus on how to identify the client. As such the password
entered by the client is transported in plain text to the server. As explained earlier,

3 of 13

Authentication Lab

cryptographically encrypting the password on the client side would not provide any
security on a non-secure connection, as whatever is sent, be it plain text or otherwise,
will be the key to authenticating the client making the encrypted key virtually
become the actual key1.

Once the server receives the username and password, it will query the database for
the salt and hash-value associated with the specified username, add the salt to the
received password, hash it and compare the value to the hash-value gotten from the
database. If the server reaches a state where the two values are identical, the client
identified by the provided username is authenticated.

In general there are two categories of such authentication: There is the single use
where the key is bundled with every operation the client wants to do and the second
option where the user is somehow remembered to be logged in.

The first option would be beneficial for quick operations, but in case of this lab,
one might think the user would like to print multiple documents and maybe even
changing paper sizes etc. in between and it would thus be cumbersome to have the
client enter their password many times in a short while.

That leaves the second category which is lasting authentication. In this case after the
initial authentication, the server will provide the client with some kind of knowledge
he or she can include in every message going forth. The main reason this is superior
to providing the password in every message is the possibility to time-restrict or even
close down a connection server-wise. This greatly reduces the risk of a replay attack,
as any sniffed message would only be useful within the lifetime of the knowledge.
The two main types of knowledge are tokens and session ids. The main difference
is that tokens are often files that can be stored and even shared between devices
for often longer periods of times, providing means of password-less authentication,
Where a session id is most often a freshly generated unique id that corresponds to a
unique session on the server coupled with the username. Session ids often last much
shorter than tokens and provides the ability to differentiate between sessions, thus
being able to know if the user is logged in at multiple locations at once.

For the sake of simplicity, our implementation does not explicitly utilize neither
tokens nor session ids, but does emulate the use of sessions. Just like we assume the
connection is secure, we assume such a session id is generated and sent to the client
at the initial authentication and that this session id is then concatenated with every
message the client sends while navigating around the presented UI. We emulate
this by saving a time stamp of the initial authentication and unauthorize the user
automatically after a preset amount of time has passed.

1This is a known issue on windows: https://en.m.wikipedia.org/wiki/Pass_the_hash

4 of 13

Authentication Lab

2.3 Password Verification

In order to authenticate a client with the server by means of a password, the server
must have some way of verifying that the entered password in indeed coupled with
the specified user. Since there is no third party involved in authentication, it is not
necessary for the server to store the password in plain text and thus only a hashed
value and a used salt is saved. When the server received the plain text password
and username, it will look up the corresponding hash and salt of that username in
the database, hash the received password with the retrieved salt and compare the
two hashes.

3 Design and Implementation
This project uses a client / server architecture based on the RMI [3] API. This
project offers a printer service which allows already registered users to connect to
it via the application server’s ip address and port number. Users must authorize
themselves by entering their username and associated password in the terminal. If
a user enters his password incorrectly three times, he will be barred from trying for
the next 10 seconds. Once a user is logged in, he can select (1) run an automatic
test program or (2) manually use the printer service features. If the user is inactive
for 10 seconds, he is automatically logged off. The features users can use includes:

1. print(filename, printer): sends file to a particular printer.
2. queue(printer): returns print queue of a particular printer to user.
3. topQueue(printer, job): sends job to top of queue.
4-6. start() / stop() / restart(): starts/stops/restarts server.
7. status(printer): returns status of a particular printer to user.
8-9. readConfig(param)/setConfig(param): read/set server config
10. authenticateUser(uid, password): authenticates the users

Figure 3.1: Operations
1

3.1 Architecture

This section will describe the methods, processes and cryptographic means used by
our system. Figure[3.2] illustrates an overview of the java project. Titles in bold
letters represents package-names. Colored boxes are classes and arrows are processes
between methods in these classes, also between classes and the database, logfiles and
printers. These processes are denoted with letters (a) to (m).

5 of 13

Authentication Lab

Figure 3.2: Auth Lab Diagram

Client: The client application starts by creating the connection (b) to the Printer
Service-interface. We have not developed a cryptographic solution that exchanges
keys and secure an encrypted communication channel here. Instead, in accordance
with the assignment description, we assume connection (b) is secured in some other
way. Before a user can perform any operations he needs to run operation 10[3.1]
first. This authorization step is then executed in Printer Servant. The user will be
noticed whether the login is successful or not.

Application Server: Whenever a server is started, a database will be created and
populated with some hard-coded users (i), because no user creation is implemented.
Furthermore three printers are created (k) from our Printer -class implemention and
populated in a global ArrayList<Printer> printers in the Server Servant-class.

1 pub l i c c l a s s Pr in t e r {
2 ArrayList<Str ing> queue = new ArrayList<Str ing >() ;
3 HashMap<Str ing , Object> s ta tu s = new HashMap<Str ing , Object >() ;
4 St r ing printerName ;
5 boolean power ;
6 boolean i sP r i n t i n g ;
7 . . .
8

Note that our solution supports an arbitrary amount of printer creations. This class
initialises an queue of type array-list, which is populated in the Server Servant upon
server start:

1 pr i va t e void i n i t i a l i s e P r i n t e r s () {
2 // p r i n t e r (boolean co lo r , i n t e g e r ink l e v e l)
3 Pr in t e r o f f i c e = new Pr in t e r (true , 90) ;
4 o f f i c e . setPrinterName (" o f f i c e ") ;
5 p r i n t e r s . add (o f f i c e) ;
6 . . .
7

6 of 13

Authentication Lab

Every time a request to the server is made from the client, the server will check
if the current session is valid. This is done by invoking session.getSessionState()
in the method for any of the operations[3.1] the user has requested. Only a valid
session can execute the operations. This session is created when a user has been
authorized by the server. This is illustrated below. Observe that the method also
invoke writeLogEntry(...). Every time a user performs an request to the server, the
responsible method logs this to the log-file (j). There exists a log for the server and
each of the printers. See example of a log-file in appendix[A.3]. As with connection
(b) there exists no encrypted channel on connection (j). This is again assumed
secured in another way. The stored data on the log-file is in plaintext.

1 pub l i c void p r in t (S t r ing f i l ename , S t r ing p r i n t e r) throws . . . {
2 i f (! s e s s i o n . g e tS e s s i onS ta t e ()) {
3 // do nothing
4 } e l s e {
5 f o r (Pr in t e r p : p r i n t e r s) {
6 i f (p . printerName . equa l s (p r i n t e r)) {
7 p . addToQueue (f i l ename) ;
8 writeLogEntry (f i l ename , path + p r i n t e r + " . l og ") ;
9 . . .

10

Method authenticateUser(uid, password) retrieves the users hashed password
and salt from the database, from the user provided username (uid), on the form
[h(password+salt), salt], by invoking db.getCredentials(uid). Then hashes the user
provided password with the database retrieved salt by invoking crypto.hash(password,
salt).

1 pub l i c S t r ing authent i ca teUser (S t r ing uid , S t r ing password) . . . {
2 . . .
3 St r ing [] c r e d e n t i a l s = db . g e tCr eden t i a l s (uid) ;
4 St r ing h1 = c r e d e n t i a l s [0] ;
5 St r ing h2 = crypto . hash (password , c r e d e n t i a l s [1]) ;
6 . . .
7

ultimo comparing the hashes by invoking crypto.compareHashes(h1, h2), and creating
a user session if a match is found.

1 . . .
2 i f (authAttempts < 3) {
3 l oggedIn = crypto . compareHashes (h1 , h2) ;
4 i f (l oggedIn) {
5 s e s s i o n . beg inSe s s i on (uid) ;
6 l oggedInUser = s e s s i o n . getUser () ;
7 . . .
8

The hashing method is responsible for producing a SHA-512 hash digest from provided
password and salt. This is done with the help of the Java Security-library[2]

7 of 13

Authentication Lab

which provides the SecureRandom-class that produces a strong random number,
and MessageDigest that produces the one-way hash function. When this method is
invoked with a password and salt it returns the hash.

1 pub l i c S t r ing hash (St r ing password , S t r ing s a l t) {
2 byte [] bSa l t = new byte [1 6] ;
3 MessageDigest md = nu l l ;
4 i f (s a l t == nu l l) {
5 SecureRandom random = new SecureRandom () ;
6 random . nextBytes (bSa l t) ;
7 } e l s e {
8 bSal t = s a l t . getBytes (Charset . forName ("UTF−8")) ;
9 }

10 t ry {
11 md = MessageDigest . g e t In s tance ("SHA−512") ;
12 md. update (bSa l t) ;
13 } catch (NoSuchAlgorithmException e) {
14 e . pr intStackTrace () ;
15 }
16 byte [] hashedPassword = md. d i g e s t (password . getBytes (Charset . forName

("UTF−8"))) ;
17 St r ing hash = new St r ing (hashedPassword , Charset . forName ("UTF−8")) ;
18 re turn hash ;

The Database-class is invoked from Service Servant (d) upon initialization of the
server and when users are being authorized. The connection to the actual database
(i) is, as with connection (b) and (j), assumed secured in some other way. The
database initializes a table with users, password and salt. The hard-coded users are
then inserted via an SQL INSERT -statement. As observed below, the username
and salt is stored in plaintext, the password is being hashed before it is stored.

1 pub l i c void i n i t i a l i s eDa t a b a s e () throws RemoteException {
2 . . .
3 St r ing s q l = " c r ea t e t ab l e u s e r s (user varchar (20) , password

varchar (200) , s a l t varchar (200)) " ;
4 . . .
5 s q l = " i n s e r t i n to u s e r s va lue s (' j e f f ' , ' " + crypto . hash ("

password22" , "22−10−2021:21.18 zz ") + " ' , '22 −10 −2021:21.18 zz ') " ;
6 . . .

When the database is queried with a given username it simply returns the hashed
password and salt of that user. So the the plaintext password is never revealed
between classes.

4 Evaluation
Whenever any of the following happens:

• Print

8 of 13

Authentication Lab

• Queue

• topQueue

• start

• stop

• restart

• readConfig

• setConfig

• User login (Authenticate a new session)

• Wrong user credentials triggered delay

It is written to the log. Everything happens as described in previous sections
including assumptions and exceptions. In order to help implementation and testing,
once the client is authenticated, he will be presented and option to do automated
tests to make sure everything is working as intended. The resulting terminal of
a client authenticating and doing automated tests can be seen in illustration A.1
with the corresponding log file shown in illustration A.4 and printer queues in
illustrations A.2 and A.3.

5 Conclusion
A simplified mock printer service has been implemented, showing how user authentication
including password transfer, storage and verification is done. Future work includes
removing assumptions about secure connections and explicitly implementing session
authentication rather than emulating such. Furthermore it would be interesting to
implement a pepper on top of the salt used in password verification and storage.
The log file is currently public and non-secret and in future versions it might be
something worth encrypting. Perhaps coupled with role-based access control.

9 of 13

Authentication Lab

A Appendix

A.1 Illustrations

Figure A.1: The resulting terminal when a client authenticates and chooses to test
the functionality automatically.

10 of 13

Authentication Lab

Figure A.2: The resulting print-queue for printer "Home" when doing automated
testing.

Figure A.3: The resulting print-queue for printer "Office" when doing automated
testing.

11 of 13

Authentication Lab

Figure A.4: The resulting log when a client authenticates and runs automated tests
on the printer service.

A.2 Setup & Running the project

• The software used in this project:
- IDE: Eclipse[1]. Version: 2020-12 (4.18.0).
- Database: SQLite[4].

• Run the project:
- Install Eclipse to your system.
- Unzip the project file
- In Eclipse: File > Import > General > Existing Projects into Workspace >
Locate the unzipped project > Finnish
- Run src/main/java/server/test/Main.java
- if localport is used pick a new port number - When program runs

• When application is running:
- Username: jeff

12 of 13

Authentication Lab

- Password: password22 - Press (1) for automated tests or (2) for manual
tests.
- The session controller is locking user out after only 10 seconds for testing
purposes. Otherwise the test would take too long to illustrate the lockout
mechanism in work. Therefore, when testing manually, it is adviced to change
this setting in: src/main/java/logic/Session.java: set Time to at least 60
seconds.
- The manually works, but not much work has been put into this, thus its not
super user friendly. The automated test tests all the functionalities and can
be found in: src/main/java/client/Client.java

References
[1] Eclipse. “IDE”. In: (). url: https://www.eclipse.org/downloads/packages/

installer.
[2] Oracle. “Package java.security”. In: (). url: https : // docs . oracle. com /

javase/7/docs/api/java/security/package-summary.html.
[3] Oracle. “Remote Method Invocation”. In: (). url: https://docs.oracle.com/

javase/7/docs/technotes/guides/rmi/hello/hello-world.html.
[4] SQLite. “database”. In: (). url: https://github.com/xerial/sqlite-jdbc/

releases.

13 of 13

https://www.eclipse.org/downloads/packages/installer
https://www.eclipse.org/downloads/packages/installer
https://docs.oracle.com/javase/7/docs/api/java/security/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/security/package-summary.html
https://docs.oracle.com/javase/7/docs/technotes/guides/rmi/hello/hello-world.html
https://docs.oracle.com/javase/7/docs/technotes/guides/rmi/hello/hello-world.html
https://github.com/xerial/sqlite-jdbc/releases
https://github.com/xerial/sqlite-jdbc/releases

	Introduction
	Authentication
	Password Storage
	Password Transport
	Password Verification

	Design and Implementation
	Architecture

	Evaluation
	Conclusion
	Appendix
	Illustrations
	Setup & Running the project

