
Technical University of Denmark

02239

Data Security

Protocol Security Lab

Authors:

Jeff Gyldenbrand
Marcus Pagh

Student Nr.:

s202790
s151714

December 20, 2021

Protocol Security Lab

Contents
1 Exercise 1: Kerberos PKInit 2

1.1 Question 1 . 2
1.2 Question 2 . 3
1.3 Question 3: . 3

2 Exercise 2: Calling Home 4
2.1 Question 1 . 4
2.2 Question 2 . 5
2.3 Question 3 . 6
2.4 Question 4 . 6
2.5 Question 5 . 7

3 Appendix 8
3.1 Code . 8
3.2 Illustrations . 11

1 of 12

Protocol Security Lab

1 Exercise 1: Kerberos PKInit

1.1 Question 1

We have created an illustration of the Kerberos_PKINIT-protocol of PKINIT.AnB
which is shown in fig 3.4. As walthrough of the protocol is described below:

• First step is for C to contact the trusted server ath in order to get authenticated
for the ticket granting server. In this message is included information about
who he is and what he wants. This is signed by his private key, allowing ath
to verify his identity. A timestamp, T0 is also added to the encrypted part of
the message to avoid replay-attacks1

• In step two, the client C is receiving a ticket-granting ticket from ath. C can
decrypt just the last part of the message:

{tag, {Ktemp}inv(pk(ath))}pk(C)

using his own private key, insuring confidentiality. He is now able to read tag
and the symmetric key Ktemp which is signed by ath insuring integrity. With
Ktemp C is able to decrypt the another part of the received message,

{|g,KCG, T1, N1|}Ktemp

, thus learning the symmetric session-key KCG.

• Now C contacts the ticket-granting server, forwarding the ticket-granting ticket
he just received as well as information about the service he would like access to
and an encrypted message containing his identity, encrypted by the session-key
KCG he learned from authenticating with ath.

• g responds with a service-ticket as well as another session-key, KCS which C
learns by decrypting the message

{|s,KCS, T2, N2|}KCG

with his session-key KCG from ath.

• It is now finally time for C to contact the service-provider. He does this by
sending his service-ticket as well as another message to authenticate himself
encrypted with his newly-acquired session-key, KCS.

• Finally s is happy and responds with the payload (service) as requested,
encrypted by the symmetric session-key KCS

When the protocol is done, C has learned about: tag, Ktemp, KCG, T1, N1, KCS, T2,
N2, Payload (Keys in bold)

1An encrypted timestamp is included in every further step as well. This is omitted from the
walk-through to prevent repeating the same explanation.

2 of 12

Protocol Security Lab

1.2 Question 2
The attack is an attack against weak authentication. It is not considered an attack as such,
because the intruder, i does not really learn any secrets from the messages between C and
ath. However, C can’t verify that the message is meant for him. i is however able to - for
some time at least - keep C occupied by simulating a lost or bad connection.

As observed in the attack trace[1.1], in step (1), i intercepts the message sent from C,
denoted x501. In step (2) i creates hes own message, encrypts it with hes own public key.
ath then respons to i with a service granting ticket in step (3). Finally i forwards this
message to C in the last step.

Figure 1.1: Exercise 1.2: Attack Trace

The fix for this attack is for ath to include the reciever, C in the message, such that the
message goes from:

{tag, {Ktemp}inv(pk(ath))}pk(C)

to
{tag, {Ktemp,C}inv(pk(ath))}pk(C)

This message is signed with the private key of ath and cannot be forged by i. This way C
can be sure its meant for him.

Worth mentioning, even though this is not the answer for this question, is that we found
another way to prevent this attack by simply encrypting the first message from C with the
public key of ath:

C− > ath : {C, g,N1, {T0, N1, hash(C, g,N1)}inv(pk(C))}pk(ath)

1.3 Question 3:
It is possible for C and ath to do a Diffie-Hellman key-exchange instead of having
ath generate the key Ktemp. For this exchange to work, it was necessary to add the
public Diffie-Hellman group, dh (the name g is already in use) to the knowledge of both
participants. To do the actual exchange, exp(dh,X), where X is chosen by C, is added to the
first message from C to ath. Since this exchange is generally prone to man-in-the-middle
attacks, exp(dh,X) is added to the signed part of the message. To generate the actual
key, ath has to similarly choose a Y and send back exp(dh,Y). This message is likewise
signed. Since ath now knows both exp(dh,X) and Y , it can already encrypt KCG with
exp(exp(dh,X), Y) in its first message. When C receives this message, he will know bothX

3 of 12

Protocol Security Lab

and exp(dh, Y) and can thus construct a key exp(dh, Y), X). Even though C does not know
the Y chosen by ath, by utilizing the property (dhXmodp)Y modp = (dhY modp)Xmodp
(in OFMC this is equivalent to exp(exp(dh,X), Y) = exp(exp(dh, Y), X)), he is able to
decipher the message and reading KCG while still insuring confidentiality. This is shown
in fig 3.1

2 Exercise 2: Calling Home

2.1 Question 1
This protocol is trying to establish a secret / encrypted channel of communication between
the two agents A and B insured by an trusted server, home.

In step(1):

A −→ B : A,B, exp(g,X),mac(pw(A, home),m1, A,B, exp(g,X))

it is observed that A generates his part of the key-negotiation gX from the publicly agreed
upon g. A sends this value along with a MAC -tag of the message, including a nonce,
m1, known to B and home, and the password known only to A and home. In step(2), B
then forwards this message to home along with the MAC -tag of his message, including the
password only known to himself and home. B also includes, in this MAC, the originally
MAC received from A, this way home can ensure authenticity and integrity upon both A
and B :

B −→ home : A,B, exp(g,X),mac(pw(A, home),m1, A,B, exp(g,X)),

B, exp(g,X), exp(g, Y),mac(pw(B, home),m2, A,B, exp(g,X),

mac(pw(A, home),m1, A,B, exp(g,X)), B, exp(g,X), exp(g, Y))

In step(3) home response with a message back to B, where it is supposed to ensure to B
that everything is OK:

home −→ B : B,A,mac(pw(A, home),m3, B, exp(g,X), exp(g, Y)),

mac(pw(B, home),m4, B,A,mac(pw(A, home),m3, B, exp(g,X), exp(g, Y)))

However, the message it a bit flawed. This is explained in 2.2.

In step(4), B sends the value of his part of the key gX to A. Now both agents can create
the secret key by: gXY and use this key to encrypt / decrypt their messages.

4 of 12

Protocol Security Lab

2.2 Question 2
The attack is an attack against weak authentication. From step(1) in the attack trace[2.1],
it is observed that the intruder, i, is intercepting the message:

A,B, exp(g,X),mac(pw(A, home),m1, A,B, exp(g,X))

The message is from A, denoted x802 in the attack trace, and meant for B, denoted x801.
Along with this message is A’s part of the key-negotiation, generated from his privately
chosen, secret value, X : exp(gX), and a MAC -tag of the message. From the publicly
available g, i forges the message by choosing X = 1 such that gx = g1 = g. Since
pw(A, home) is still kept secret from i, the MAC -tag is no longer valid. In step(2), i then
forwards the new message to B :

i− > (B, 1) : A,B, g, x306

.

In step(3), B then forwards the message to home, with a message containing his part of
the key: exp(g, Y). This message is also intercepted by i, letting i learn exp(g, Y) from B.

In step(4), i instantiates a new session with B, this time forwarding the intact message
from A from step(1). When B again forwards this message to home in step(5), i intercepts
it once more, this time forwarding it as is to home in step(6).

In step(7) home replies to the message believed to come from B, allowing i in step(8)
to forward the reply back to B in the first session where i intercepted the message from
B to home in step(3). Since the MAC -tag of exp(g,X), exp(g, Y) is made with the key
pw(A, home) which B does not know, and neither exp(g,X) nor exp(g, Y) itself, B is only
able to verify that the message originates from home, but not that the message actually
contains the exp(g,X) and exp(g, Y) that B expects. This is where the crucial vulnerability
lies, as the message from home actually originates from another session.

In step(9) B replies back to A with a message containing his part of the original key-
negotiation, exp(g, Y). Again i intercepts. At this point i knows both X (As he has
chosen it to be 1 himself) and exp(g, Y) allowing him in step(10) to encrypt a message, M,
with the key exp(exp(g, Y), X) and sending it to B. As B believes only he and A knows
the key and he is able to decrypt it, he is able to authenticate i as A on the message M,
violating the goal B authenticates A on M.

5 of 12

Protocol Security Lab

Figure 2.1: Exercise 1.2: Attack Trace

2.3 Question 3
In order to fix the protocol we need to change the message sent by home to B :

home− > B : B,A,mac(pw(A, home),m3, B,

exp(g,X), exp(g, Y)),mac(pw(B, home),m4, B,A,

mac(pw(A, home),m3, B, exp(g,X), exp(g, Y)))

into:
home− > B : exp(g,X), exp(g,Y), B,A,mac(pw(A, home),m3, B,

exp(g,X), exp(g, Y)),mac(pw(B, home),m4, B,A,

exp(g,X), exp(g,Y),mac(pw(A, home),m3, B, exp(g,X), exp(g, Y)))

This will allow B to not only verify that the message originates from home (Since only
home (and B) can create a MAC -tag with pw(B, home) as key), but also that the message
is indeed meant for B to establish a confidential channel between B and A. This works
since B is now able to verify that he and home agrees on the chosen values, removing the
vulnerability of accepting a simple replay from another session. See the complete AnB
code in fig 3.2

2.4 Question 4
We set a new goal where the password pw(A,home) is a guessable secret:

pw(A, home) guessable secret between A, home

From the OFMC-tutorial2, it is stated that,

2http://www2.imm.dtu.dk/ samo/OFMC-tutorial.pdf pg. 81-83

6 of 12

Protocol Security Lab

"[...] whenever a message is produced by en honest agent that contains the
password, this triggers a new secrecy goal, namely to produce the same message
with the password replaced by guessPW [...] This acts as a witness that the
intruder could produce the same message by guessing."

By inspecting the attack trace[2.2] we observe in step(1) that the honest agent A, denoted
x20, is sending a message containing his password, pw(x20,home). This message is intercepted
by the intruder, i, whom is performing the guessing attack by recursively checking mi in
pw(m1, m2). As seen in the last two step, i is able to produce the same message with
guessPW

Figure 2.2: Exercise 2.4: Attack Trace

2.5 Question 5
As seen in the complete code[3.3] we have changed the former trusted server, home to an
agent with a normal role, Home. This means that this agent can be instantiated by the
intruder, thus no longer is considered an trusted server.

In step(1), A, denoted x20 in the attack trace[2.3], sends his message, just as usual. The
intruder, i, intercepts this message, which contains A’s part of the key, exp(gX). Now i
simply generates his part of the key, exp(gY) where Y = 1, thus gY = g1 = g and obtains
the secret key from gX

Y . Because i has knowledge on pw(A,Home) he is able to decrypt
the MAC in the message from A, and immediately creates a response message to A, as seen
in step(3). From A’s perspective, there now exists an secure channel from A to B where
in reality A is talking to the intruder.

Figure 2.3: Exercise 2.5: Attack Trace

7 of 12

Protocol Security Lab

1 Protoco l : Kerberos_PKINIT_setup
2 # Just the f i r s t two s t ep s o f the Kerberos PKINIT
3 # (s u f f i c i e n t f o r f i nd i n g the attack)
4

5 Types : Agent C, ath , g , s ;
6 Number N1 ,N2 ,T0 ,T1 ,T2 , Payload , tag , dh ,X,Y;
7 Function pk , hash , sk ;
8 Symmetric_key KCG,KCS, skag , skgs
9

10 Knowledge : C: C, ath , g , s , pk (ath) , pk (C) , inv (pk (C)) , hash , tag , pk , dh ;
11 ath : C, ath , g , pk (C) , pk (ath) , inv (pk (ath)) , hash , skag , tag , dh
12

13 where C!=ath
14

15 Actions :
16

17

18 C → ath : C, g ,N1 , {exp (dh ,X) ,T0 ,N1 , hash (C, g ,N1) } inv (pk (C))
19

20 ath → C: C,
21 ({| ath ,C, g ,KCG,T1 |} skag) ,
22 ({| g ,KCG,T1 ,N1 |} exp (exp (dh ,X) ,Y)) ,
23 { tag , {exp (dh ,Y) ,C} inv (pk (ath)) }pk (C)
24

25

26 Goals :
27 C authenticates ath on exp (exp (dh ,Y) ,X)
28 exp (exp (dh ,X) ,Y) secret between C, ath
29 exp (exp (dh ,Y) ,X) secret between C, ath
30 KCG secret between C, ath
31

Figure 3.1: A modified version of the (corrected) example file PKINIT-short.AnB
where the key Ktemp is not generated by ath but is obtained from a Diffie-Hellman
key-exchange.

3 Appendix

3.1 Code

8 of 12

Protocol Security Lab

1 Protoco l : CallHome
2

3 Types : Agent A,B, home ;
4 Number X,Y, g ,M,m1,m2,m3,m4,m5;
5 Function pw, mac
6

7 Knowledge : A: A, home ,pw(A, home) ,B, g ,mac ,m1,m2,m3,m4,m5;
8 B: B, home ,pw(B, home) , g ,mac ,m1,m2,m3,m4,m5;
9 home : A,B, home ,pw, g ,mac ,m1,m2,m3,m4,m5

10

11 Actions :
12 A→B: A,B, exp (g ,X) ,mac(pw(A, home) ,m1,A,B, exp (g ,X))
13

14 B→home : A,B, exp (g ,X) ,mac(pw(A, home) ,m1,A,B, exp (g ,X)) ,
15 B, exp (g ,X) , exp (g ,Y) ,
16 mac(pw(B, home) ,m2,A,B, exp (g ,X) ,mac(pw(A, home) ,m1,A,B, exp (g ,X)) ,
17 B, exp (g ,X) , exp (g ,Y))
18

19 home→B: exp (g ,X) , exp (g ,Y) ,B, mac(pw(A, home) ,m3,B, exp (g ,X) , exp (g ,Y)) ,
20 mac(pw(B, home) ,m4,B,A, exp (g ,X) , exp (g ,Y) ,mac(pw(A, home) ,m3,B, exp (g ,X) ,

exp (g ,Y)))
21

22 B→A: B,A, exp (g ,Y) ,mac(pw(A, home) ,m3,B, exp (g ,X) , exp (g ,
Y)) ,

23 mac(exp (exp (g ,X) ,Y) ,m5,B,A, exp (g ,Y) ,mac(pw(A, home) ,m3,B, exp (g ,X) , exp (g ,
Y)))

24

25 A→B: {|M|} exp (exp (g ,X) ,Y)
26

27 Goals :
28 B authenticates A on M
29 M secret between A,B
30

31 #pw(A, home) gue s sab l e s e c r e t between A, home
32

Figure 3.2: Question 2.3: CallHome. Attack is fixed

9 of 12

Protocol Security Lab

1 Protoco l : CallHome
2

3 Types : Agent A,B,Home ;
4 Number X,Y, g ,M,m1,m2,m3,m4,m5;
5 Function pw, mac
6

7 Knowledge : A: A,Home,pw(A,Home) ,B, g ,mac ,m1,m2,m3,m4,m5;
8 B: B,Home,pw(B,Home) , g ,mac ,m1,m2,m3,m4,m5;
9 Home : A,B,Home,pw, g ,mac ,m1,m2,m3,m4,m5

10

11 Actions :
12 A→B: A,B, exp (g ,X) ,mac(pw(A,Home) ,m1,A,B, exp (g ,X))
13

14 B→Home : A,B, exp (g ,X) ,mac(pw(A,Home) ,m1,A,B, exp (g ,X)) ,
15 B, exp (g ,X) , exp (g ,Y) ,
16 mac(pw(B,Home) ,m2,A,B, exp (g ,X) ,mac(pw(A,Home) ,m1,A,B, exp (g ,X)) ,
17 B, exp (g ,X) , exp (g ,Y))
18

19 Home→B: exp (g ,X) , exp (g ,Y) ,B, mac(pw(A,Home) ,m3,B, exp (g ,X) , exp (g ,Y)) ,
20 mac(pw(B,Home) ,m4,B,A, exp (g ,X) , exp (g ,Y) ,mac(pw(A,Home) ,m3,B, exp (g ,X) ,

exp (g ,Y)))
21

22 B→A: B,A, exp (g ,Y) ,mac(pw(A,Home) ,m3,B, exp (g ,X) , exp (g ,
Y)) ,

23 mac(exp (exp (g ,X) ,Y) ,m5,B,A, exp (g ,Y) ,mac(pw(A,Home) ,m3,B, exp (g ,X) , exp (g ,
Y)))

24

25 A→B: {|M|} exp (exp (g ,X) ,Y)
26

27 Goals :
28 B authenticates A on M
29 M secret between A,B
30

31 #pw(A, home) gue s sab l e s e c r e t between A, home
32

Figure 3.3: Question 2.5: CallHome. Home is now a normal role

10 of 12

Protocol Security Lab

3.2 Illustrations

Figure 3.4: Exercise 1: Illustration of PKINIT.AnB. Blue boxes are the complete
message, which whitin contains the individual parts of the message. Boxes with a
red field are messages C is not able to read or decrypt

11 of 12

Protocol Security Lab

Figure 3.5: Exercise 2: Illustration of call-home.AnB. Blue boxes are the complete
message, which whitin contains the individual parts of the message.

12 of 12

	Exercise 1: Kerberos PKInit
	Question 1
	Question 2
	Question 3:

	Exercise 2: Calling Home
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5

	Appendix
	Code
	Illustrations

