
The role of language based security in DeFi : The

example of the PolyNetwork Attack

Rikke Toft Grabski, s174288 Nathan Paulet, s202574
Jeff Gyldenbrand, s202790 Gary Fougerolle, s211974

December 2021

1

1 Abstract

The PolyNetwork Cross-Chain platform experienced a 600 million USD hack
due to a vulnerability that would escalate the privileges of the attacker putting
him as the owner of the entirety of the funds on the network. Most open-source
DeFi projects, including the PolyNetwork, are not using automated tests, on
their code, with security in mind. This paper propose a number of measures
to increase the security of the PolyNetwork and, in general, other DeFi open-
source projects, such as introducing automated tests with program analysis on
their code.

Keywords— Blockchain, Cross chain, DeFi, Smart contracts, Crypto currency,
Language-based security, Ownership analysis

2

2 Introduction and contributions

Decentralised finance is hotter than ever with the increased use of cryptocurrencies
based on block-chains, like Bitcoin, Etherium and many more. This has resulted in
many active, open source projects, that are based on the trading of these currencies.
Every once in a while there are news of another successful attack, where millions of
dollars have been stolen. One such example is the 600 million USD that were stolen
from multiple chains via the cross-chain platform PolyNetwork, by using a function
that should never have been available to the attacker.

In this paper, we will encourage the use of static program analysis on the very
source code of these projects, by analysing the PolyNetwork to uncover the core prob-
lem that enabled the attack in the first place, as well as provide a more specific analysis
strategy to be used by the platform.

To give the reader a better understanding of the PolyNetwork hack, we will initially
explain the basic principles of the architecture behind PolyNetwork smart contracts
and cross chain operations. This is explained in section 3. Next, in section 4, we
will provide an overview of the extent of the PolyNetwork hack and an insight into
the vulnerability that allowed it. Section 5 will dive into possible preventions of such
attacks on cross-chain platforms in the future by enforcing language-based security on
cross-chain platforms. In section 6, we provide a detailed analysis of the cause behind
the attack and identify the main flaws in the PolyNetwork. Finally, in this section, we
will present our proposals for implementations that can increase the security of their
platform. This report will ultimo provide an conclusion and further work that can be
done.

Section Nathan Rikke Jeff Gary
Abstract 0% 0% 100% 0%
Introduction 0% 50% 50% 0%
Required Information 0% 0% 100% 0%
A 600$ Oversight 100% 0% 0% 0%
Enforcing Language based security 0% 100% 0% 0%
Detailed analysis 100% 0% 0% 0%
Conclusions and further work 50% 50% 0% 0%
This list 100% 0% 0% 0%

3

3 Required Information

3.1 The Architecture of Poly Network Smart Contracts

Poly Network is a platform integrating with different chains and compatible with mul-
tiple cryptocurrency. It lets users swap tokens from a digital ledge to another one.
[10] To do so, the users are able to use any method on any contract on one ledge to
another one.

Why calling a cross-chain method, the platform uses what they call relayers that
take the information from the first chain and transfer it to the second chain, while the
Poly Network syncs the block header of participating chains.

The Poly Network uses the EthCrossChainManager method to validate a trans-
action and execute the method in the transaction. Its relayers utilises the Manager’s
contract, the verifyHeaderAndExecuteTx on Manager to verify the header and check
if it has been executed before. They also use the executeCrossChainTx method to
execute the transaction’s method.

Each transaction method is supposed to be cryptographically secure since what it
does is that it takes the method and arguments and hash it. However, only the four
first bytes are used as the MethodID, so we can have a lot of collisions.
[7]

3.2 Cross Chain explained

The chain interoperability described above consists of two main types of operations
in the poly network: read- and write. A source chain is the one that initiates a cross
chain operation and a destination chain is the target of the operation.[13]

A write-operation will change the destination chain and a read-operation will only
return back a status of the destination chain to the source chain, never change it. The
cross chain operations can be assets transfers, such as a monetary assets, it could be
assets exchanges, contract calls or something else. [1]

For such an operation a relayer is needed. Relayers help transferring the read- or
write operations between two chains.
As observed in Figure 1[11], chain A is listening (1) to a specific block (2) on chain B
where the relayer helps transferring the status on the destination chain to the source
chain.

Also observed, a user (3) performs a cross chain transaction from chain A to chain
B. This is done by contacting a source manager on the source side, and providing the
destination block chain, Mdst, and the write operation, Qwrite. When this is executed,
the source manager will log it, and a relayer will retrieve this log.

Now the relayer transfers a transaction on to the destination chain. The transac-
tion calls the destination manager and includes Qwrite and an inclusion proof, which
validates the existence of the log. Then the destination manager validates the write
operation and executes it. The relayer makes a proof after the execution which is then

4

send to the source chain. The source chain then validates this proof and updates the
status of the transaction in the log.

Figure 1: Overview for write operation, PolyNetwork: An Interoperability Pro-
tocol for HeterogeneousBlockchains

5

4 A $600 Million Oversight

The cryptocurrency platform Poly Network was hit by an attack on August 10th 2021.
The attacker managed to steal more than $600 millions dollars [3] that he surprisingly
returned in the next days.[4]

To make that possible, the attacker abused from one on the Ethereum chain’s
method called EthCrossChainManager, also called Manager, that allowed him to ex-
ecute any cross-chain transaction.[7]

Figure 2: EthCrossChainManager Call, Blog Kraken

This method owns another contract named EthCrossChainData, also called Data,
that oversees the entities managing the wallets (they are called the keepers).

The vulnerability was that by executing any transaction with Manager, the at-
tacker could update the list of keepers (entities able to call for big transactions) and
then put himself as the only owner of the entirety of funds on the Poly Network (using
putCurEpochConPubKeyBytes method) and transfer them to his wallet.

6

5 Enforcing Language-Based Security in Cross-
chain Platforms

Most open source projects are being developed using platforms like GitHub1 to cen-
trally manage the source code. When someone wishes to contribute to the project it
is usually required to create a pull request (or PR) to merge the new or altered code
into the code base. This pull request will have to be approved by a number of human
reviewers, before it can be merged into the code base.[5]

Human reviews of code can often be lacking from a security perspective, as a re-
viewer would need an intimate knowledge of the code base, as well as the design, to
be able to determine if a given change to the code could potentially compromise the
overall security of the solution being developed. And even if the reviewer did have
the necessary insight, they would not necessarily have the needed time to ascertain if
the PR introduces any vulnerabilities. To help accommodate this, GitHub and others
offer the feature of running automated checks and tests, that a PR must succeed, along
with the human review, in order to have their PR merged. See, for example Test cases
by GitLab[12].

Despite this, there are still many open source cross-chain projects, like PolyNet-
work, that either do not use automated checks at all, or only use it for the sake of
checking code quality or other non-security related purpose.

Program analysis are techniques used to predict the behaviours or values of sys-
tems that could appear dynamically while it is executed, and can be used to validate
software, such that we can ensure that a system is secure, by checking that it can-
not behave in an unintended manner[8]. The discipline of program analysis has been
around for a long time, and so the idea of using it in a software project is not new.

While searching for resources on using program analysis in DeFi projects, we
quickly found that most, if not nearly all, resources only discuss using such analy-
sis for smart contracts - specifically only exploring the security aspect from a user’s
perspective. One such example is Vandal, which is a framework for analysing the
security of Etherium smart contracts[2].

Long story short, people are simply not talking about ensuring a high standard
of security on the source code of DeFi projects by using program analysis techniques.
It may generally be time consuming and expensive to create program analysis for a
system, but if it is a safety-critical system like cross-chains in DeFi are, it should be
a no-brainer to invest in it, such that $600 million cannot be stolen again due to a
vulnerability in the code.

Our idea for cross-chain platforms is to not only run automatic checks for every
PR, as many projects already do, but to add tests based on program analysis to add
increased language-based security. In the case of PolyNetwork, they could use a light-
weight static analysis, inspired by the information flow analysis. In information flow
analysis, usually the flow of information of variables is examined - for example to
uncover any undesired flow going from a private or protected variable, into a public

1www.github.com

7

variable[9].

public −→ private ✓

private → public ✗

The vulnerability in the PolyNetwork attack was that exposed functions have ac-
cess to private functions through ownership. In other words, there was a flow going
from a private function to a public one, which is unsafe by design. Specifically, we saw
that the exposed function EthCrossChainManager had ownership over private func-
tions, like putCurEpochConPubKeyBytes owned by EthCrossChainData, which was
one of the main causes of making the $600 million attack possible.
In other words, we had the following ownership flows:

putCurEpochConPubKeyBytes −→ EthCrossChainData

EthCrossChainData −→ EthCrossChainManager

Which resulted in the following, undesired ownership flow, through transitive property:

putCurEpochConPubKeyBytes −→ EthCrossChainManager

It is possible to make this analysis be far more light-weight by limiting the analysis
to ownership flows going into the single functions that PolyNetwork use to expose their
contracts for public use, although it will naturally be a less thorough analysis.

Reasons for using this light-weight ownership analysis rather than information
analysis on every variable and data file, is in part due to it being far faster by only
looking at a subset of the functions (whilst still being able to tell if there are any
violations in what is exposed). Besides, being a cross-chain platform, PolyNetwork
is unlikely to have mapped out all of the information on the chains it is integrated
to, and instead communicates using contracts, meaning an information flow analysis
on the source code of PolyNetwork could possibly not find all problem-flows, if the
information is part of/owned by another chain. Besides, PolyNetwork already has
some idea of what functions they wish to be exposed, considering their quick-fix of
using a text file of functions that are white-listed for public use. This means it is only
a matter of crafting the analysis and feeding it with the preexisting information of
which function that are acceptable, exposed functions.

8

6 Detailed Analysis - the Cause of the PolyNet-
work Attack and Countermeasures

Now that we know the general methods we can apply to this category of system, we
need to know about the detailed scenario of the attack to understand how to apply
these. Here is a diagram summering the exchanges made over the network:

Figure 3: Exchange Diagram other the network

As you can see, the attacker is sending a cross chain transaction between two
blockchains (here Ontology and Ethereum). This transaction is composed of a Metho-
dID which represent the first four bytes of the hash result of the called method and
its parameters.

It is interpreted by Poly Network which send it between both chains thanks to
relayers. Once the transaction arrives at the Ethereum chain, it is interpreted and the
EthCrossChainData method is called through the EthCrossChainManager method.

Once this method is called, the attacker is able to add himself to the list of keepers
which allow him to transfer big amount of money between wallets.

This is the next part of the attack. He then repeated these steps on multiple chains
(Ethereum, Polygon and Binance Smart Chain) to reach the $600 Millions.

9

Here are the list of assets transferred by the hackers [6]:

Figure 4: List of assets

But how did he got access to this method ?

Since the MethodID is only the first four bytes of the hash gotten from the method
and arguments, he simply brute forced it until having a hash with the same first four
bytes as the EthCrossChainManager method.

He didn’t even have to get the right method name and the right parameters, just
to have random characters for both the methods and the parameters leading, through
the hash function, to a hash with the same first four bytes. He was then able to call
this method without any other restriction.[7]

After the analysis of this attack, we can identify the main flaws in the Poly Net-
work platform that lead to the attack. As we saw earlier, the first problem was the fact
that anybody could call any method from a chain (here EthCrossChainManager and
EthCrossChainData) without having any verification on whether it should be available
to the user to call.

What is normally done for this kind of feature is to use a public/private key pair
linked to each user (especially in the context of DeFi and blockchains). This way any
user is authenticated and has its own rights. However, since users may not always
have a public/private key pair, another solution would be to use an Access Control
Policy which could be role based, attribute based, identity based.

The second problem here is a problem of user’s inputs. Indeed the user does not
need to know the exact name and parameters of these methods to call them. Only
providing a similar hash to the one expected allows the method call. As we saw earlier,
putting random characters for both the method name and its parameters will work as
long as their first four bytes of hash will match.

10

What should be done here is to sanitise the user input and be sure that the meth-
ods called as well as the parameters given are permissible for the user. We could use
a whitelist which consists of a list of allowed methods that can be called by the users.
We could also use blacklisting but in this case to forbid some characters that could be
entered by the user and result in unexpected issues (here unexpected hashes). How-
ever, simply checking a text-file in the source code, to check if it is allowed for a user
to use it, also does not guarantee that said functions do not use any private functions,
and so the white-list fix is insufficient.

The way the methods are accessed is not appropriate as well since using a hash
for this is not giving that much of a security level, especially when you use only the
first four bytes of it which can be cracked really easily and fast nowadays.

What could be done here is to increase the key space by saving more than the
first 4 bytes of the hash and maybe by artificially increasing it more than it should by
adding a padding for example to reach the key space we use in today’s cryptographic
standards.

As a result, what Poly Network could implement the following to increase the
security level of their platform and avoid attacks of the same kind in the future is:

• an Access Control policy and mechanism

• limit the methods’ accessibility and accesses to avoid flows from high security
level to low security level

• an sanitation of the user’s inputs (with a whitelist of names and a blacklist of
forbidden characters)

• a greater key space for the MethodID (using a bigger part of the result of the
hash and using padding if possible)

By doing so, the user will only be able to call known method names (the ones in
the whitelist or within the range of access his methods have), with the right parame-
ters, only if he has the right permissions for this action (checked by the access control
policy and mechanism).

If a user tries to crack the MethodID the way it was done this will result in:

• first a way longer research to crack it since the key space is bigger (multiplied
by two for each bit added to the key space)

• even if the hash is finally cracked, it will not be accepted by the system since
the method name and parameters are not in the whitelist or not within its range
of access.

• even if these are the right method name and parameters, he won’t have the
permissions to call it (ensured by the access control policy and mechanism)

As a conclusion, the Poly Network platform’s security against this attack would
be efficiently increased.

11

7 Conclusions and further work

From an analysis of the PolyNetwork attack which happened in August 2021, we have
proposed a number of measures for the PolyNetwork to take, in order to increase their
security and preventing an attack like it from happening again. To summarise, these
steps are:

• Implement an Access Control policy and mechanism

• Use automated ownership analysis

• Sanitise user inputs

• Increase the MethodID’s key space

We have further motivated the general use of automated analysis of source code
in order to increase the language-based security of cross-chain projects, which is often
overlooked. Specifically in the case of PolyNetwork and the recent attack, we suggest
analysing the flow of ownership of functions, to make sure exposed functions do not
have ownership over private functions, as seen in the list above.

Further work could be to formally define the ownership analysis, look into more
types analysis that would be essential for DeFi Blockchain projects, as well as imple-
menting them.

12

References

[1] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch Lafuente.
SoK: Lending Pools in Decentralized Finance. First Online: 17 September
2021. url: https://link.springer.com/chapter/10.1007/978-3-
662-63958-0_40.

[2] Lexi Brent et al. Vandal: A Scalable Security Analysis Framework for
Smart Contracts. https://arxiv.org/pdf/1809.03981.pdf. Sept. 2018.

[3] Ryan Browne. Crypto platform hit by $600 million heist asks hacker to
become its chief security advisor. https://www.cnbc.com/2021/08/17/
poly-network-cryptocurrency-hack-latest.html/. Last accessed 2.
Nov. 2021. 2021.

[4] Ryan Browne. Hacker behind $600 million crypto heist returns final slice
of stolen funds. https://www.cnbc.com/2021/08/23/poly-network-
hacker-returns-remaining-cryptocurrency.html. Last accessed 2.
Nov. 2021. 2021.

[5] Collaborating With Pull Requests. https://docs.github.com/en/pull-
requests/collaborating-with-pull-requests. Last accessed 18. Dec.
2021.

[6] Community. Poly Network Exploit. Last accessed 15. Nov. 2021. url:
https://en.wikipedia.org/wiki/Poly_Network_Exploit.

[7] KrakenFX. Kraken Blog. https://blog.kraken.com/post/11078/
abusing-smart-contracts-to-steal-600-million-how-the-poly-

network-hack-actually-happened/. Last accessed 4. Nov. 2021. Sept.
2021.

[8] Flemming Nielson. Lecture 1 of Program Analysis 02242. Technical Uni-
versity of Denmark, DTU Compute. Sept. 2020.

[9] Flemming Nielson and Hanne Riis Nielson. Language-Based Security. In:
Formal Methods. Springer, Cham., 2019.

[10] Poly Network Website. https://poly.networkl. Last accessed 4. Nov.
2021. 2021.

[11] Poly Team. PolyNetwork: An Interoperability Protocol for Heterogeneous
Blockchains. Last accessed 7. Nov. 2021. 2020. url: https://www.poly.
network/PolyNetwork-whitepaper.pdf.

[12] Test Cases (Ultimate). https://docs.gitlab.com/ee/ci/test_cases/
index.html. Last accessed 18. Dec. 2021.

[13] Sam M. Werner et al. SoK: Decentralized Finance (DeFi). Submitted on
21 Jan 2021, last revised 26 Sep 2021. url: https://arxiv.org/abs/
2101.08778.

13

