
Password Storage

Adam Jens Jóelsson1[s202094], Jeff Gyldenbrand2[s202790], and Jón Ágúst
Hannesson3[s202057]

1 Technical University of Denmark, Copenhagen, Denmark,
s202094@student.dtu.dk

2 Technical University of Denmark, Copenhagen, Denmark,
s202790@student.dtu.dk

3 Technical University of Denmark, Copenhagen, Denmark
s202057@student.dtu.dk

Abstract. This report presents the design and evaluation of a secure
password store ,run locally on your computer and on the web. The design
makes use of AES encryptions aswell as password hashing functions. In
this design all security- and functional requirements made at the start
were met. A user can store all of his passwords in one place and get
instant access to them using a master password created at signup.

Keywords: Encryption · Security · Passwords



Password Storage 1

1 Introduction

The system described in this report is an client-server password manager. A
password manager is a software application which allows users to store pass-
words and sign-in details for multiple services securely. The application can also
generate strong passwords. The user only has to set up and remember one Mas-
ter password which will replace all the endless different passwords for different
platforms. All the online credentials are then encrypted in an online vault which
is only accessible by the user with his Master password, which gives him instant
access to any credentials he might need. The application will offer two-factor
authentication via SMS for extra security. To secure the user from a malicious
server, all encryption/decryption will occur on the client side and will the server
never have access to any passwords or credentials inside the vault.

1.1 Definitions, abbreviations, symbols

AES Advanced Encryption Standard

CBS Cipher Block Chaining

HTTPS Hypertext Transfer Protocol Secure

TLS Transport Layer Security

SSL Secure Sockets Layer

PBKDF-2 Password-Based Key Derivation Function

SMTPS Simple Mail Transfer Protocol Secure

SFTP Secure File Transfer Protocol,

VPN Virtual Private Network

NIST National Institute of Standards and Technology

2FA Two factors of authentication

DoS Denial of Service

SYN Synchronize

ACK Acknowledge

SYN-ACK Acknowledge of sync.

HDW Hardware

MP Master Password

ISP Internet Service Provider

2 Requirements

When designing a system it is important to figure out the requirements of the
system. Once these are known, they can be addressed in the design.

2.1 Functional

The functional requirements describe what the user should be able to achieve
with the system. The functional requirements for our system are as follows:



2 Password Storage

– The system should allow users to store multiple passwords and login details
and get access to them with a single master password

– The system should allow users to store other sensitive data, e.g. credit card
info, security codes, sensitive notes

– The system should allow users to access their passwords from multiple ma-
chines.

– Users should be able to view their passwords, even though they are offline.

– The system should include a password generation tool.

– The client should be available on multiple platforms.

2.2 Security

The security requirements describe what security features should be present in
the system. The security requirements of our system are as follows:

– Implement Proper Password Strength Controls on Master Password

– Zero knowledge encryption (vendor should not be able to view user data)

– Data should be encrypted locally, before transit

– Data should be decrypted locally

– The system should offer two factor authentication (2FA)

– The system must be resistant to DoS attacks

– Login information should not be stored in plain-text

– Encryption keys should not be stored on the server

3 Risk Analysis

The risks in our system are considered by finding the assets that our system con-
tains and defining the values of said assets[1]. Based on our assets, we have build
a threat model that takes into account any vulnerabilities in our system[3.2].
From this we are able to postulate the likelihood of exploitation with some cer-
tainty[3.3].

3.1 Assets

The assets of our system consists of both hardware, software and data. The
hardware of our system is the physical servers. These are costly if damaged or
lost, but replaceable. The software running our system is not open source, which
makes it hard to analyze for an adversary looking for weaknesses. The data is
arguable the most valuable asset. If data is lost or corrupted, it can be very
detrimental to the company’s reputation and lead to loss of users.



Password Storage 3

Asset Confidentiality Integrity Availability

Hardware

- Servers DoS

- Clients Loss of hardware

Software

- Server software Tampered Certificate Expires

- Client software Tampered

Data

- Master password Disclosure, Guess Modified Lost/Deleted

- Passwords Disclosure Modified Lost/Deleted

Table 1: Assets

3.2 Threat model

Our threat model is based on the Dolev Yao model[8] where an adversery can
overhear, intercept, and synthesize any message, and thus is only limited by our
cryptograhic means. This means that the adversary can take the roles of any
party: users, server administrators etc.

What can go wrong:

Data Our system maintains one database with three tables; Users, PW Data
and 2FA. As observed in the database table[2], the only data not hashed
or encrypted is the salt in the user table, and the phone number and
type chosen, in the 2FA table. In the case of a rouge administrator or
an hacker gains access to the server database, this adversary cannot
read any vital information. However, the phone number is still exposed
and thus the adversary can link the phone number to the corresponding
hashed username and salt. A possible attack would be for an adversary
to perform social engineering by calling the phone number and lure
out the plaintext username and possible other information to crack the
password.

DoS As observed in the asset table[1] an DoS-attack of the server can affect
the availability of the system to legitimately users. An adversary can do
packet-flooding attack where the server is flooded with SYN-requests.
These are normally used to initiate and establish a connection, however
here, the adversary, never finalizes the connection.

To counter this our server uses SYN cookies to sends a hashed SYN-
ACK back to the client, constructed from the clients IP-address and
port number. This hash is then included in the clients ACK, and only
then, the server, allocates memory for the connection.

HDW Stensikker A/S only have one server running. This means a single point
of failure if that servers hardware fails somehow. This could be due to



4 Password Storage

natural disasters, theft, water damage etc.

To prevent this we could have multiple servers running concurrently
in a distributed system on physically different places. However, due to
the added complexity, we only have one. To mitigate the problem, we
daily do a backup of the entire system. This backup is kept on two dif-
ferent offline devices. If a system crashes backup hardware is available
and the backup would be installed. Expected time before the system is
running again is within few ours from crash.

3.3 Likelihood of exploitation

Establishing Risk Levels: Without any concrete data its not possible to pro-
vide exact estimations to the likelihood of exploitation of our system. Thus we
estimates it on subjective probability based on expert opinions on the algorithms
used in this project. Thats why we, with confidence, consider the overall con-
fidentiality and integrity of our system very high. The algorithms we use are
considered some of the best encryption and hashing algorithms AES-CBC and
Pbkdf2. These are explained in greater details in section[5.1]. Furthermore, as
explained, we deal with potential problem of a DoS-attack or loss of hardware.
Based on this, we have created a risk diagram that shows the likelihood of an
exploitation on confidentiality[1], availability[2] of our system.

Confidentiality of passwords

Data

Guess MP

VL

Discl. MP

VL

Discl. P

VL

Fig. 1: VL = Very low., MP = Master Password, P = Password

Guessing of master password is considered very low. We enforce users to pick
a master password on at least eight characters with at least one uppercase letter,
one special character and one number. We calculate the password entropy[7], E,
from: E = log2(RL) where R is all symbols in the set: upper- and lowercase
letters 52, numbers are 0-9, special characters are 32. The length, L ≥ 8. From
equation (1) we observe that an attacker needs at most 252.4 guesses to crack
the password.

log2(948) = 52.4bits (1)



Password Storage 5

Disclosure of master passwords are also considered very low because this
password is only known to the user. If our servers and databases we publicly
leaked, only a hashed version of the master password would be disclosed. The
same goes for disclosure of passwords, these are stored encrypted and only
decrypted locally at the user side.

Availability of passwords

Hardware

DoS

VL

Loss of HDW

VL

Software

Offline client.

MED

CA. exp.

VL

Data

Lost / Deleted

VL

Fig. 2: VL = Very low. Med = Medium

Denial of Service-attacks on hardware is considered low. As mentioned ear-
lier we mitigate this in order to prevent exhausting of both hardware resources.
Natural disasters in Denmark are not frequent, or more precisely non-existent.
As mentioned earlier we have a solid backup plan in case of loss of hardware,
thus this is considered very low risk.

Offline client. When the client is offline, users can’t retrieve their passwords.
This is considered to be a more likely risk, because ISP downtime or general
loss of connection happens from time to time. Even though there exists cases
where CAs have been exploited or certificates have been issued to a malicious
actor, confidentiality of CAs are still considered strong. Renewal of certificates
is easy and a reminder tells it in advance of expiration. Therefore, the risk on
availability is considered very low.

Lost or deleted data is considered very low because of the daily backups
and separation of said backups.

3.4 Usability

Our system is fairly easy to use for the general user, meaning that users do
have to download the software and install it before use, instead of a browser
or website-based password manager, where they could directly create their user
and login. However that trade off would result in a larger software project that
would spawn even more security concerns that had to be addressed. The larger
and more complex a system is, the greater the risks of errors in both software
itself, between the services in the system and potential vulnerabilities an adver-
sary can exploit.



6 Password Storage

Our system focuses on being simple, robust and rather secure; both in the sense
of integrity and availability. This trade off is unfortunately, a little bit, at the
expense of usability. However, the sign up process[4.2] is rather simple and de-
signed for the average user. Furthermore, the Client application[4.6] allows for
offline functionality, which increases usability even more.

4 Design

This section will dive deeper into the description of the system. Figure[3] il-
lustrates an overview of the system. Particulary it shows the process of a user
recieving a password from either local- or cloud storage.

Fig. 3: Overview of the system

The system uses a client/server architecture. Each user installs the desktop
application downloaded from the Stensikker A/S website at https://stensikker.org.
The download of the application is done over the TLS/SSL-encrypted protocol,
HTTPS, to ensure the integrity of the application. This is elaborated in greater
details in section 4.1. The mobile application can be downloaded from the Apple
App store or the Google Play store, depending on the users platform.

4.1 Certificates & HTTPS

The website for Stensikker A/S has an SSL Certificate file in its server which
secure encrypted communication between the site and its users. This certificate
consists of a key pair: a public and a private key, which together can establish



Password Storage 7

encrypted connections. The certificate is digitally signed by a trusted CA. This
verifies the Stensikker A/S websites identity is authenticated. This ensures the
integrity of downloads of the desktop application, and prevents man in the mid-
dle-attacks. A simplified description of the steps is illustrated below.

TLS/SSL protocol:

• Browser: A user connects to https://stensikker.org. His browser requests
that the server identify itself.

• Server: Now the server response by sending a copy of its TLS/SSL certificate
and its public key.

• Browser: The browser now validates the certificate against a list of trusted
certificate authorities. The browser also checks that the certificate is not
expired.

• Browser: The browser then creates a symmetric session key, encrypts it with
the servers public key and sends it to the server.

• Server: The server decrypts the session key with its private key and send
back an acknowledgment encrypted with the session key.

• Server: The server and the users browser now have a secure channel.

4.2 Signup process

In the client application users are able to create a new account or login to an
existing one. When creating a new account, the user must provide a username,
which acts as an identifier for the user. The server then checks whether the hash
of the username is found in the user table. If it is already in use then the user is
notified and has to pick another username. Furthermore he must choose a master
password for the account. The user is asked to repeat the master password to
ensure simple typing mistakes. Lastly, the user has the option to provide a hint
for his password, in case the user forgets his password. The authentication is
covered in section 4.4. During signup a 128-bit salt is generated by a Pseudo
random number generator and saved server-side.

4.3 Server

The server acts like a cloud storage solution in our system. The server stores
three tables, one for user information, one for two-factor authentication infor-
mation and the third one for the password storage.

The user table has four columns, the hash of the username, the salt, the salted
hash of the password and the password hint. The storage table has two columns,
one for the hashed username and another for the encrypted data, which consists
of login information and password to multiple different platforms for the user.
The 2FA table has five columns, one for the hashed username, one for the users
phone number, a timestamp, a hashed IP column and a type column. The 2FA
is covered in detail in section 4.5.



8 Password Storage

User table Vault data table

Hashed user Salt Hashed password Hint

... ... ... ...

... ... ... ...

Hashed user encrypted data

... ...

... ...

2FA table

Hashed user Phone # Timestamp IP Type

... ... ... ... ...

... ... ... ... ...

Table 2: Database

4.4 Authentication

The system uses the master password both for authentication and as an encryp-
tion key. The server stores the hashed password in a table, linking it to a salt
and the hashed username.

If the password hash in the user table has the same or less iterations, an in-
truder could learn the encryption key simply by hashing the password hash
again. To prevent this the authentication hash is a hash of the encryption key,
which is derived from the master password with a hashing function.

If we let h be some cryptographic hashing function, then the relationship be-
tween the master password, encryption key and authentication hash would be
as follows:

h(master password + salt) = encryption key (2)

h(encryption key + salt) = authentication hash (3)

As cryptographic hash functions are ”one way”, it is easy to derive the encryp-
tion key and authentication hash from master password, but not the other way
around. The same goes for retrieving the authentication hash from the encryp-
tion key.

To prevent rainbow-table attacks the system uses a salt for the the authenti-
cation hash. The salt is generated when the user signs up for the system and is
kept in the user table. The salt consists of characters, generated by a Pseudo-
random number generator.

When signing in, the client sends the hashed username to the server and the
server then looks up user and replies with the salt if the hashed username is
valid. User then hashes the password,with the salt 500.000 times and saves that
hash in local memory to later use as encryption key. The client then also hashes
the password, with the salt, 1,000,000 times and sends the hashed password to
the server. The server checks whether the hashed username and if password hash
match. If it is valid log-in information, the server checks whether the user has



Password Storage 9

opted for 2FA. If the user has opted in for some type of 2FA, the server goes
through that process and once complete, the server returns the encrypted data
matching to that hashed username.

4.5 2FA

The 2FA uses a phone number as the second factor. This is an optional feature,
as some users don’t care for the extra security. The 2FA is configurable and users
can choose from one of the four options:

– None: No 2FA
– Every New IP: The user is required to use 2FA, every time they log in from

a new IP-address
– Every New IP + two weeks: The user is required to use 2FA, every time they

log in from a new IP-address and once every two weeks
– Every time: The user is required to use 2FA every time they log in.

A user’s known IP-addresses are kept in the 2FA table. This column is a string
containing the hash of every IP-address the users has logged in from, separated
by and ”;”. When a new IP-address has to be added, it is concatenated to the
string. When a user, who chooses to use this feature, logs in the server hashes
their IP-address and checks if the hash is in the IP column. If it isn’t the user is
required to use 2FA.

The timestamp keeps track of the last time the user used 2FA. If the users
chooses so, they can be required to use 2FA once every two weeks (at least). For
those users, during login, the server checks the timestamp to see if it is older
than two weeks, then they are required to use 2FA, otherwise not.

4.6 Client

Each user installs the client locally to use the system. The user uses the client
to sign up, login and view their stored data. All data is decrypted/encrypted
locally by the client, so all data is encrypted in transport. All decrypted data
is never stored on file, only kept in memory during use. When signing in to
the server, the client hashes the username and the master password and sends
them to the server. The master password is hashed enough times locally to get
the authentication hash, instead of sending the encryption key and hashing that
again server-side.

To allow offline functionality, the client can store encrypted data on file, similarly
to the server. Thus the client can store encrypted data on file, for offline use.
When the client is online, it syncs their data to that of the server. This offline
functionality would be optional.

Users can download the client as an desktop application or a mobile app.



10 Password Storage

4.7 Cryptographic Functions

The system will use PBKDF-2 as a key derivation function and AES-CBC as an
encryption algorithm.

4.8 Password Generation

The client application has the tool for users to generate strong randomized pass-
words with the click of a button. By using Shannon Entropy for passwords,
defined in section[3.3], the generated passwords are defined to have the length,
L = 14. Of this set three is designated numbers, 0−9, two symbols, 32, and nine
upper- and lowercase letters, 26 ∗ 2. An example of such generated password is
seen below:

password = GV2fYFC!o59w@H

This means an adversary would have to, at most, perform 291.76 guesses to crack
the password:

log2(9414) = 91.76bits (4)

When the password is generated, the user can save it to the local- or cloud
storage.

5 Evaluation and analysis

5.1 The algorithms used in our project

AES-CBC For the vault encryption, we have chosen AES-CBC, for encryption
of stored data on both local and cloud storage.

How it works:
AES is a symmetric key algorithm used for both encryption and decryption of
data. For encryption of a message, the message is split into blocks of 128-bits. A
key of 128-, 192- or 256 bits is chosen for the algorithm, see figure[4a]. Each of
the blocks is then combined with the key by a bitwise XOR-operation, and run
through the AES-algorithm, n − 1 rounds, where n = 10 , 12 or 15, depending
on the key bit-size chosen. Each of these rounds performs operations, all done
in a 4x4 grid, also referred as a finite field, containing one byte in each cell, see
figure[4b]:

• Substitution: the cells of the grid is substituted accordingly to a substitution-
box, also called a lookup table, where each byte is mapped to another
byte based on a function in this field. Some important points to mention
is that no bytes are substituted with itself and no opposite bytes exists,
E.g 10111010 → 01000101, to ensure as much complexity in obscuring the
relationship between the key and the ciphertext as possible.



Password Storage 11

(a) Block Cipher Encryption. (b) Top: 4x4 Matrix
(finite field), contain-
ing a 128-bit message
block. Each cell is one
byte. Bottom: shows
the row operation.

Fig. 4: AES-CBC algorithm

• Shifting rows: the three last rows of the grid is shifted to the left. First row
is not changed. Second row is shifted left by one cell. The third row is shifted
left by two cells and the fourth row, three cells.

• Mixing columns: each of the columns are multiplied with a fixed matrix.
This together with the shifting rows-operation provides diffusion in the ci-
pher, which means statistical relationships between the ciphertext and the
plaintext is well hidden.

• Round keys: initially, AES bitwise XOR’s the initial 128-bit key into the
first round. From here, the key is expanded to the n − 1 rounds. The key
is derived by doing bitwise XOR on each of the columns in its own block.
When the round key is generated, it then bitwise XOR’s into the next round,
until the last round is reached, where a last key-expansion is done.

Why we choose AES-CBS:
The AES is one of the most popular algorithm in the world, when it comes to
data encryption, and is used widely in many applications and protocols such
as SMTP, FTPS and HTTPS and VPNs. AES was chosen and is endorsed by



12 Password Storage

NIST. Even NSA uses AES to autherize transmission of classified data on top
secret level4, thus a natural choice for our implementation.

AES comes with several modes of operation which makes it applicable to a
lot of specific areas of applications. In our case, we are using the CBS mode
of operation because it is very good with plaintext encryption or data that is
repeated a lot.

Pbkdf2 In our system we use Pbkdf2 (Password based key derivation function 2)
to derive encryption keys from password [6]. This function returns a fixed length
output from various length inputs. To use this algorithm a few parameters must
be set to achieve the right output.

– PRF: Pseudo random function
– P:Password
– S: Salt
– c: Iteration count
– dkLen: Length of desired key (in bits)

And the output will be:

– DK: Derived key

The algorithm uses the PRF to derive a key from a password and a salt. The
inputs we will use to derive the are:

DK = Pbkdf2(HMAC − SHA256, Password, Salt, 500000, 256) (5)

With P as the master password, the derived key DK is the key used to encrypt
the users data. To derive the password hash for user authentication, P is still the
master password, but ,c, the iteration count is set to 1,000,000.We decided to
use 500,000 and 1,000,000 iterations to significantly slow down any brute force
attacks.

Why we chose Pbkdf2

There are many different Key derivation functions cryptographers can chose
from. We chose to use Pbkdf2 because of it’s widespread use in similar systems
1Password[1], Bitwarden[2], and the recommendation from NIST [3].

The algorithm is also quite flexible, as the amount of computation required
can be tuned with the number of iterations and the size of the salt.

6 State of the art

Currently there are many different solutions available for password storage. The
design of these systems is very similar, and our system is no exception. The use

4 https://techjury.net/blog/what-is-aes/#gref

https://techjury.net/blog/what-is-aes/#gref


Password Storage 13

of a master password, to retrieve the encrypted password, can be seen in most
systems.

Some systems offer a recovery process in case the user forgets the master pass-
word. Nordpass for example supply the user with recovery code, which they can
enter in case they forget the master password [4]. In the case of lastpass, they
offer a password recovery process in their mobile app and a password hint as
well [5].

Most systems offer a variety of platforms to download their client applications.
Desktop applications, mobile apps and browser extensions are common among
these kinds of systems, where the browser extensions can automatically insert
passwords to password fields on web pages.

7 Group contribution

Section Adam Jeff Jón

Introduction 30% 30% 40%
Requirements 35% 30% 35%
Risk Analysis 30% 35% 35%
Design 35% 35% 30%
Evaluation and analysis 35% 35% 30%
State of the art 30% 35% 35%
This list 100% 0% 0%

References

1. 1Password Homepage, https://support.1password.com/pbkdf2/. Last accessed 31.
Oct 2021

2. Bitwarden Homepage, https://bitwarden.com/help/article/
what-encryption-is-used/. Last accessed 31. Oct 2021

3. M. Sönmex Turan, E. Barker, W. Burr, L. Chen:Recommendation for Password-
Based Key Derivation. National Institute of Standards and Technology (2010)

4. Nordpass homepage, https://support.nordpass.com/hc/en-us/articles/
360002376557-How-to-generate-a-new-Recovery-Code-. Last accessed 31. Oct
2021

5. Lastpass homepage, https://blog.lastpass.com/2019/05/
never-lose-access-lastpass-account-recovery-mobile/. Last accessed 31. Oct
2021

6. B. Kaliski:PKCS #5: Password-Based Cryptography Specification Version 2.0. RSA
Laboratories (2000)

7. Shannon Entropy, slide 14, http://www.cs.cornell.edu/courses/cs5430/2016sp/l/
15-passwords2/lec.pdf.

8. Dolev Yao model, https://ieeexplore-ieee-org.proxy.findit.dtu.dk/stamp/stamp.jsp?
tp=&arnumber=1056650.

https://support.1password.com/pbkdf2/
https://bitwarden.com/help/article/what-encryption-is-used/
https://bitwarden.com/help/article/what-encryption-is-used/
https://support.nordpass.com/hc/en-us/articles/360002376557-How-to-generate-a-new-Recovery-Code-
https://support.nordpass.com/hc/en-us/articles/360002376557-How-to-generate-a-new-Recovery-Code-
https://blog.lastpass.com/2019/05/never-lose-access-lastpass-account-recovery-mobile/
https://blog.lastpass.com/2019/05/never-lose-access-lastpass-account-recovery-mobile/
http://www.cs.cornell.edu/courses/cs5430/2016sp/l/15-passwords2/lec.pdf
http://www.cs.cornell.edu/courses/cs5430/2016sp/l/15-passwords2/lec.pdf
https://ieeexplore-ieee-org.proxy.findit.dtu.dk/stamp/stamp.jsp?tp=&arnumber=1056650
https://ieeexplore-ieee-org.proxy.findit.dtu.dk/stamp/stamp.jsp?tp=&arnumber=1056650

	Password Storage

